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Appendix A. Prothero-Robinson convergence.
We consider the Prothero-Robinson (PR) [18] test problem written as a split

system (1.1)

y′ = µ (y − φ(t))︸ ︷︷ ︸
g(y)

+φ′(t)︸︷︷︸
f(y)

, µ < 0 , y(0) = φ(0) , (A.1)

where the exact solution is y(t) = φ(t). A numerical method is said to be PR-
convergent with order p if its application to (A.1) gives a solution whose the global
error decreases as O(hp) for h→ 0 and hµ→ −∞.

Theorem A.1. Consider the IMEX TSRK method (3.1) of order p, stage order
q for the explicit part, and stage order q̂ for the implicit part. Assume that the implicit
part is linearly stable, and that the spectral radius of the implicit stability matrix (4.3)
is bounded uniformly in the infinite “region of interest” (5.1)

ρ
(
M̂(z)

)
≤ ρ0 < 1 , ∀ z ∈ R .

Then the IMEX method (3.1) is PR-convergent with order min(p, q).
In particular if the explicit stage order is q = p, then the PR order of convergence

is p. It is convenient to construct IMEX TSRK methods (3.1) with explicit stage
order q = p, even if q̂ = p− 1, as such methods do not suffer from order reduction on
the PR problem.

Proof. Let

φ[n] = φ (tn−1 + ch) = [φ(tn−1 + c1 h), . . . , φ(tn−1 + cs h)]
T
.

The method (3.1) applied to (A.1) reads:

Y [n] = (e− u) yn−1 + u yn−2 (A.2a)

+hAφ′[n] + hBφ′[n−1]

+hµ Â
(
Y [n] − φ[n]

)
+ hµ B̂

(
Y [n−1] − φ[n−1]

)
,

yn = (1− ϑ) yn−1 + ϑ yn−2 (A.2b)

+hvT φ′[n] + hwT φ′[n−1]

+hµvT
(
Y [n] − φ[n]

)
+ hµwT

(
Y [n−1] − φ[n−1]

)
.

Consider the global errors

en = yn − φ(tn) , E[n] = Y [n] − φ[n] .
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Write the stage equation (A.2a) in terms of the exact solution and global errors

E[n] = −φ (tn−1 + ch) + (e− u) φ(tn−1) + uφ(tn−2)

+ (e− u) en−1 + u en−2

+hAφ′ (tn−1 + ch) + hBφ′ (tn−2 + ch)

+hµ ÂE[n] + hµ B̂E[n−1] ,

to obtain(
I− hµ Â

)
E[n] = (e− u) en−1 + u en−2 + hµ B̂E[n−1] (A.3)

− (φ (tn−1 + ch)− eφ(tn−1)) + u (φ(tn−2)− φ(tn−1))

+hAφ′ (tn−1 + ch) + hBφ′ (tn−2 + ch) .

The exact solution is expanded in Taylor series about tn−1:

φ (tn−1 + ch)− eφ(tn−1) =

∞∑
k=1

hkck

k!
φ(k)(tn−1) ,

φ (tn−2)− φ(tn−1) =

∞∑
k=1

(−1)khk

k!
φ(k)(tn−1) ,

h φ′ (tn−1 + ch) =

∞∑
k=1

khkck−1

k!
φ(k)(tn−1) ,

h φ′ (tn−2 + ch) =

∞∑
k=1

khk(c− e)k−1

k!
φ(k)(tn−1) .

Inserting the above Taylor expansions in (A.3) leads to(
I− hµ Â

)
E[n] = (e− u) en−1 + u en−2 + hµ B̂E[n−1]

+

∞∑
k=1

(
−ck + (−1)k u + kA ck−1 + kB (e− c)k−1

) hk
k!
φ(k)(tn−1)

= (e− u) en−1 + u en−2 + hµ B̂E[n−1] +O
(
hq+1

)
where q is the stage order of the explicit method. The last equality follows from the
stage order conditions (2.3). Let z = hµ. We have:

E[n] = Ŝ(z) (e− u) en−1 + Ŝ(z) u en−2 + z Ŝ(z) B̂E[n−1] + Ŝ(z)O
(
hq+1

)
,(A.4)

Ŝ(z) =
(
I− z Â

)−1
.

From (A.4) it follows that

z vT E[n] = z vT Ŝ(z) (e− u) en−1 + z vT Ŝ(z) u en−2 (A.5)

+z2 vT Ŝ(z) B̂E[n−1] + zŜ(z) O
(
hq+1

)
.

Note that h and hµ are allowed to vary independently, and therefore the order of the
asymptotic term does not change upon multiplication by z = hµ.
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Similarly, write the solution equation (A.2b) in terms of the exact solution and
global errors:

en = −φ(tn) + (1− ϑ)φ(tn−1) + ϑφ(tn−2)

+(1− ϑ) en−1 + ϑ en−2

+hvT φ′ (tn−1 + ch) + hwT φ′ (tn−2 + ch)

+hµvT E[n] + hµwT E[n−1] .

After rearranging the expression, and expanding the exact solution in Taylor series
about tn−1, we obtain

en = (1− ϑ) en−1 + ϑ en−2 + hµvT E[n] + hµwT E[n−1]

+

∞∑
k=1

(
−1 + (−1)k ϑ+ k vT ck−1 + kwT (c− e)k−1

) hk
k!
φ(k)(tn−1)

= (1− ϑ) en−1 + ϑ en−2 + hµvT E[n] + hµwT E[n−1] +O
(
hp+1

)
. (A.6)

The last equality follows from the order conditions (2.5).
The following error recurrence is obtained by combining (A.4), (A.5), and (A.6) en

en−1
E[n]

 = M̃(hµ) ·

 en−1
en−2
E[n−1]

+O
(
hmin(p+1,q+1)

)
. (A.7)

Assume a one-step, order p method is used to initialize both the step and the stage
solutions of the TSRK method [16, Section 6.2]. The error starting values are e0 = 0,
e1 = O(hp), and E[1] = O(hp). The error amplification matrix

M̃(z) =

 1− ϑ+ z vT Ŝ(z) (e− u) ϑ+ z vT Ŝ(z) u z
(
wT + z vT Ŝ(z) B̂

)
1 0 0

Ŝ(z) (e− u) Ŝ(z) u z Ŝ(z) B̂

 ,
is similar to the the stability function (4.3) of the implicit method for any finite nonzero

z, M̃(z) ∼ M̂(z). Therefore its spectral radius is uniformly bounded below one for all
z = hµ of interest. By standard numerical ODE arguments [11] the equation (A.7)
implies convergence of global errors to zero at a rate ‖en‖ = O

(
hmin(p,q)

)
.

The discussion can be extended to IMEX-TSRK method applied to semi-discrete
partial differential equations. It is well known that Runge-Kutta methods can suffer
severe order reductions in the presence of non-homogeneous boundary conditions or
nonzero source terms [15]. Consider the system

y′ = V y + b(t) ,

where V is a spatially discretized differential operator and b(t) represents the non-
homogeneous boundary or source terms. This system can be cast in the PR form
(A.1) after a transformation of variables that diagonalizes V, and after identifying
−µφ(t) +φ′(t) with the transformed b(t). The analysis reveals that the IMEX-TSRK
method applied to this linear PDE system converges with order min(p, q).
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Appendix B. Coefficients of the third order IMEX TSRK method. The
parameters are found using the Differential Evolution ga optimization package by
maximizing the length of the imaginary axis segment included in the stability region
of the explicit component. The stiff accuracy condition (5.13b) and A(α) stability of
the implicit component are included as optimization constraints. For good quality of
solutions the genetic optimizer ga is run multiple times; each run is initialized with
the previous result.

c =
[

0 1
]T

u =
[

1 0
]T

A =

[
0 0

1.825912381819746 0

]
B =

[
1/2 1/2
− 1/2 −0.325912381819746

]
Â =

[
5/12 0

0.815364469611720 5/12

]
B̂ =

[
1/2 1/12
− 1/12 −0.148697802945053

]
ϑ = 0

v =
[

0.81536446961172 5/12
]T

w =
[
− 1/12 −0.148697802945053

]T

(B.1)
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Appendix C. Coefficients of the fourth order IMEX TSRK method.
The parameters are found using the optimization procedure explained in Appendix
B.

c =
[

0 0.5 1
]T

u =
[

0.237173125722858 0.528507103963907 0.278367184188801
]T

A =

 0 0 0
1.215905100969091 0 0
− 1.012523027539376 1.143656957186445 0


B =

 0.039528854287143 0.158115417148572 0.039528854287143
0.296417850660651 −0.314328597357395 −0.169487250308440
0.069404240178355 0.283215661018536 0.794613353344841


Â =

 0.235880190910947 0 0
1.018461419211348 0.235880190910947 0
0.290136315264242 0.389812569689545 0.235880190910947


B̂ =

 0.039528854287143 0.158115417148572 −0.196351336623804
0.060537659749704 0.393311975375446 −0.679684141283538
0.115608054942414 −0.091275974184587 0.338206027566240


ϑ = 0.278367184188801

v =
[

0.290136315264242 0.389812569689545 0.235880190910947
]T

w =
[

0.115608054942414 −0.091275974184587 0.338206027566240
]T

(C.1)
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Appendix D. Another fourth order IMEX TSRK method. The implicit
component method is L-stable and is taken from [1].

c =
[
−0.19320190561126 −0.58689424506961 1.08752332811466

]T
u =

[
0.45705571481934 1.05195992030028 0.15144080311463

]T
A =

 0 0 0
0.130476793083096 0 0
1.649241112842109 1.814778592781876 0


B =

 0.39936246636454 −0.16633596050061 0.03082730334415
0.51702376261274 −0.18175387306707 −0.00068100739809
−5.84960861008881 3.22359516594067 0.40095792975345


Â =

 0.5 0 0
0.55515820921130 0.5 0
−0.27897090290997 2.32682280748097 0.5


B̂ =

 0.01138595046334 0.04659103146040 −0.29412317271565
−0.48129318880262 0.30924798197004 −0.41804732714804
−2.38622282079758 0.99017411095761 0.08716093649826


ϑ = 0

v =
[
−0.70240474564317 2.11852316846112 0.39319598421807

]T
w =

[
−2.07554769770216 0.84049470544433 0.42573858522182

]T

(D.1)

Appendix E. Coefficients of the sixth order IMEX TSRK method.
The development of this pair starts with a predetermined L-stable implicit com-

ponent from [1] . The only free parameters for the explicit component the entries
of the A matrix. The coefficients B of the nonstiff method result from the explicit
stage order conditions (2.3) and the internal consistency conditions (2.11). The A
coefficients are computed using a numerical optimization procedure where we opti-
mize the explicit stability region such as to contain the longest possible interval along
the imaginary axis. We have also considered maximizing the area of a half ellipse
included in the stability region, and with one semi-axis overlapping the imaginary
axis; the results are similar to the ones discussed below and are not reported here.
The optimization process is done in two steps. First, we explore the parameter space
using the genetic algorithm function ga in MATLAB optimization toolbox. The best
member of this process is then taken as the starting point for MATLAB’s fminsearch
routine, which locally refines the solution and provides a sufficient number of accurate
digits.
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c =
[
−0.40455452705961 −0.26488149320550 0.05730060498812 0.35370097422467 0.48881518147020

]T
u =

[
0.0002157372318872 0.0001354655498456 0.0000469196256648 0.0000256681792066 0.0000230139042425

]T
A =


0 0 0 0 0

−0.411067755933170 0 0 0 0
−2.184767292491065 0.988337848532673 0 0 0
−1.933520824847556 −0.039861058310592 0.757541697266156 0 0
−0.605970379043349 −1.561665570720364 1.243988457457954 0.094790995264783 0



B =


−1.28995988436797 3.01509152040882 −4.63540469340360 7.43932768849976 −4.93339342096474
−1.07127144661267 2.48892090515797 −3.73103986608896 5.53336809422864 −3.07365595840746
−0.24158168198390 0.58513684309224 −0.97567738262348 1.29786646201535 0.58803272807197
−0.67042428681047 1.66052413771998 −2.85719727361944 4.08269477244835 −0.64603052144256
−1.51656343997187 3.67738907820218 −5.98650039451221 8.41545308430861 −3.27208363610734



Â =


0.5 0 0 0 0

−0.21971694115244 0.5 0 0 0
0.34677391973940 −0.87844580948604 0.5 0 0
0.06601787269656 −1.14976271542161 −0.08264051407691 0.5 0
−1.69420405359670 0.16618320114019 −0.74229361529808 0.20048354140037 0.5



B̂ =


−1.42651400380231 3.34568800074286 −5.21803000182508 8.75340345119152 −6.35888623613472
−1.85213037155704 4.34496259959515 −6.76681774290671 11.10081457512045 −7.37185814675508
−4.26388543763339 9.73682010462664 −13.73465558507126 18.29003094666633 −9.93929061422790
−10.19622755259608 22.71041154118940 −29.47781369898124 33.88465664359473 −15.90091493400099
−16.69367618197397 36.82959193421020 −46.44024346854481 51.34375399377619 −22.98075715573894


ϑ = 0

v =
[
1.38310762038221 −1.20955981252655 0.11281066473162 −1.91985715272309 2.64595762329489

]T
w =

[
−4.70654020323220 10.88079796245341 −15.26460646566261 18.34573036115907 −9.26784059787675

]T

(E.1)
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Appendix F. IMEX TSRK methods on Van der Pol equation. We con-
sider the van der Pol equation

d

dt

[
y
z

]
= f(y, z) + g(y, z) =

[
z
0

]
+

[
0

((1− y2)z − y)/ε

]
, 0 ≤ t ≤ 0.55139, (F.1)

with parameter values taken from [2]

ε = 10−6, y(0) = 2, z(0) = −2

3
+

10

81
ε− 292

2187
ε2 − 1814

19683
ε3 +O(ε4) . (F.2)

We integrate equation (F.1) treating the first term on the right explicitly and the
other term implicitly with different fixed step sizes. The results at the final time are
compared against the MATLAB reference solution. The errors for the stiff compo-
nent z are plotted against step sizes in Figure F.1. All IMEX-RK methods except
ARS(2,2,2) exhibit order reduction. All IMEX-BDF methods display the expected
orders. IMEX-TSRK(2,3) and IMEX-TSRK(3,4) also show satisfactory convergence
behavior and still retain the advantage of higher accuracy compared to the corre-
sponding IMEX-BDF methods of the same order. IMEX-TSRK(5,6) suffers from
order reduction in the high accuracy regime. This is also the case for another high
order method KC785. The IMEX-RK methods use more right hand side evaluations
per step than the IMEX-TSRK methods, and exhibit order reduction. This test case
illustrates the benefit of the proposed IMEX-TSRK schemes.
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Fig. F.1. Convergence of IMEX-TSRK, IMEX-RK, and IMEX-BDF schemes for the stiff
variable z of the van der Pol equation (F.1) with ε = 10−6. The solution errors (measured at the
final time) are plotted against the simulation time step h.
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Appendix G. Stability regions for the proposed IMEX-TSRK methods
of order three and four. The stability regions are shown in Figure G.1. The regions
of combined stability for all choices of the stiff stability region S include an open
subset of the left complex half plane (thus allowing conditional stability for positive
step sizes), as well as a nontrivial part of the imaginary axis (which is desirable for
certain PDEs such as advection equations where the Jacobian eigenvalues after spatial
discretization could have large imaginary parts [15]).
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(e) The third order method. Constrained
explicit stability regions Nα for α ∈
{60◦, 75◦}.
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Fig. G.1. (a),(b) Stability regions for the implicit parts of the proposed IMEX-TSRK
methods. (c),(d) Stability regions for the explicit parts. (e),(f) Explicit stability regions Nα

in (4.4) are constrained by the A(α) stability of the implicit part. The explicit stability regions
Nα shown here correspond to α = 60◦ (outer contours) and α = 75◦ (inner contours).
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Appendix H. Stability regions for the proposed IMEX-TSRK method
of order six.

The stability regions are shown in Figure H.1. The regions of combined stability
for different choices of the stiff stability region S are smaller than the unconstrained
stability region (i.e., the standard stability region of the explicit method). Never-
theless, they include an open subset of the left complex half plane (thus allowing
conditional stability for positive step sizes), as well as a part of the imaginary axis.
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Fig. H.1. (a) Stability regions for the explicit parts of the proposed IMEX-TSRK methods.
(b) The explicit stability regions Nα in (4.4) are constrained by the A(α) stability of the
implicit part. The explicit stability regions Nα shown here correspond to α = 45◦ (outer
contours), α = 75◦ (middle contours), and α = 90◦ (inner contours).
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